OLED Light Panel

User Guide v1.0

Please read this user guide carefully before using the product.

Contents

Handling Instruction

A. Handling and Safety	2
B. Storage and Operation	3
C. Disposition	3

Installation

A. Product Overview	4
B. Preparing for use	
- Connector - Molex	_
- Power driver types	
- Additional Check Points	
C. Installation Guide	6
- Procedure: Driver Connection - Rigid / Flexible type panels	
- Connection Method - Schematic diagram	
- Driver list	

Technical Information

A. Product portfolio	11
B. Spectrum	
C. Flux vs. Current	16
D. Lifetime	17
E. Efficacy vs. Luminance	17
F. CCT & Duv vs. Luminance	18
G. IV Curve	18
H. Voltage vs. Temperature	19
I. Uniformity & Surface Temperature	
J. Angular Distribution	21
- Lambertian angle distribution	

- ΔUV angle distribution

Reliability

A. Reliability test condition	22
- Rigid type	
- Flexible type	

- Operation lifetime

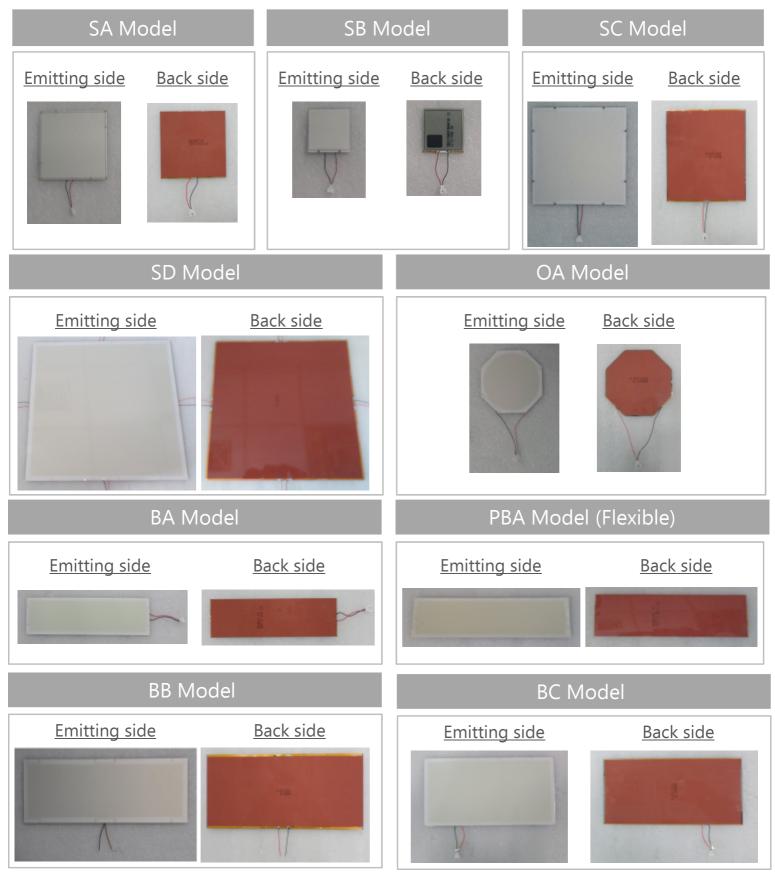
 Please note that the information given in this document is for your reference only, and is not to be misconstrued as guaranteed data.
 For the specifications of each product, please refer to the data sheet.

Handling Instruction

A. Handling and Safety

- **1.** Unpack packing box with care. Remove packing trays gently and carefully from packing box.
- **2.** During unloading and handling, gloves are required to prevent finger cuts or possible shocks. Gloves are also required to avoid fingerprints being left on the glass, and to keep moisture from causing corrosion to the metal traces.
- **3.** Handle panels with caution. Mechanical stress such as shocks and pressures on the panel surface (active area, encapsulation glass cavity area) must be avoided to prevent cracking of the glass, delamination, scratching of the film, and internal structure damage. Do not press or drop the panel.
- **4.** During unloading and handling, panels should always be held from the side. Avoid direct contact with metal contact pads or connector traces.
- **5.** Protect the panel surface from scratches. Avoid direct contact on panel surface and do not stack panels on top of each other.
- **6.** Protect the corners and edges during handling, assembly or installation to prevent chipping or breakage of glass.
- 7. Avoid contact with chemicals such as solvents.
- **8.** Contact with water must be avoided to prevent damage of films and corrosion of metal traces. Water drops must be wiped immediately.
- **9.** To remove particle/foreign materials and surface stains, gently wipe the surface of the panel with non-abrasive cloth.
- **10**. In case of breakage, avoid direct contact with bare hands. Do not swallow particles, chips, or materials.
- **11.** For interconnections, spring contacts are recommended. Soldering and other interconnecting technologies which apply heat to the panel may cause damage, and are therefore not recommended.
- **12.** Do not hold the panel on the surface. Hold the panel from the edge.
- **13.** In case of connecting multiple panels, series connection is highly recommended. Panel to panel uniformity problem can occur by parallel connection.

Handling Instruction


B. Storage and Operation

- **1.** Store and operate OLED panels within the ranges specified in the product specifications on page 11. Recommended temperature is at 25°C; Recommended relative humidity is below 70% (RH). (High temperature and humidity can cause film degradation, bubble generation, and film delamination)
- **2.** Store panels in the trays and ESD pouches as delivered from LG Chem.

C. Disposition

1. Dispose OLED materials/panels/modules in accordance with each region's environmental laws and regulations. If necessary, consult qualified agencies on industrial waste treatment.

A. Product Overview

B. Preparing for use

Connector - Molex

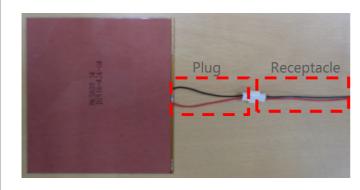
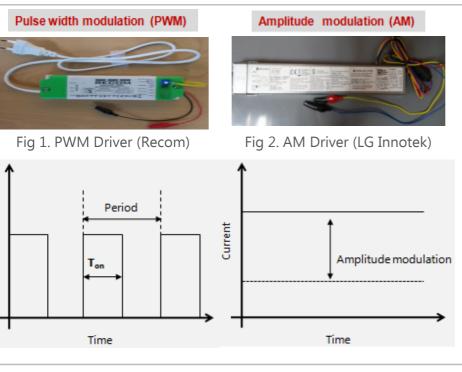


Fig. N6SA40-F (w/ molex connector) * Maximum current per contact : 2A



Part #. 51006-0200 (Plug)

Part #. 51005-0200 (Receptacle)

Power Driver Types

The two main driver types are AM and PWM.

When using <u>AM drivers</u>, select 'constant current' as output.

When using <u>PWM drivers</u>, select driver with current levels below 200% of panel's spec current.

 * AM drivers produce a steady current, so they have less of an affect on OLED panel lifetime.
 PWM drivers deliver a 'peak' of current for each pulse, therefore, may have some affect on lifetime.

Additional Check Points

- 1. Connect panels in series. (Parallel connection may cause uneven brightness among panels)
- 2. Do not apply reverse bias. (Reverse bias may cause failure of the panels)

Current

C. Installation guide: Driver Connection

Procedure - Rigid Type

* This example is provided as a guideline to connecting OLED panels to drivers. Please note that the Recom power driver may not be suitable for all panels or applications.

1. Compare Electric Levels

- A. See page 9 for each OLED model's electric characteristics (ex. N6SA30)
- B. Check Driver's maximum output levels

(ex. Recom)

			A. OLED	B. Driver	
Ŋ	Model		N6SA30	Recom	
	(a)	Voltage [V]	8.5V	34VDC	
	b	Current [mA]	150mA	350mA	

2. Select the Power Driver

Check Point (b) : Driver Current > OLED Current (ex. 350mA > 150mA)

→ If you wish to achieve brightness above spec levels, the Driver's Maximum Current must be higher than the OLED Specification Current. (Brightness is controlled by current input)

3. Determine the maximum number of OLED Panels per Driver

Check Point (a) : No. of panels x OLED Voltage < Driver Voltage

Ex) 8.5V x **3 panels** = 25.5V < 34VDC *vs.* 8.5V x *4 panels* = $34V \ge 34VDC$ \rightarrow Therefore, a Recom driver can drive up to three N6SA30 panels

4. Connect the OLED Panel (with Plug) to Receptacle (ex. N6SA30)

Plug and receptacle connected

OLED panel with plug connector

Receptacle connector

5. Connect Receptacle to the Driver * See Schematic Diagram on page 7

→To achieve exact brightness at spec levels, a dimmer must be used to control (reduce) the Driver's current levels

C. Installation guide: Driver Connection

Procedure – Flexible Type

* This example is provided as a guideline to connecting OLED panels to drivers. Please note that the Recom power driver may not be suitable for all panels or applications.

1. Compare Electric Levels

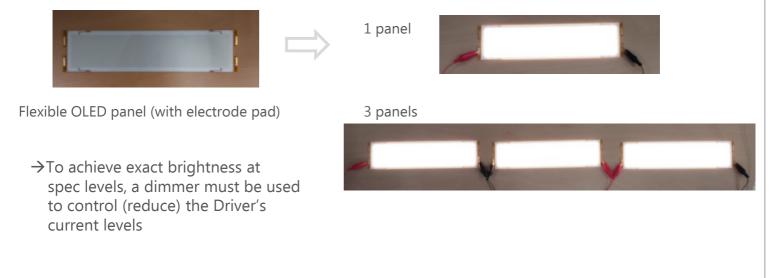
- A. See page 9 for each OLED model's electric characteristics (ex. P6BA30)
- B. Check Driver's maximum output levels

(ex. Recom)

			A. OLED	B. Driver	
Ŋ	Model		P6BA30	Recom	
	(a)	Voltage [V]	8.6V	34VDC	
	b	Current [mA]	150mA	350mA	

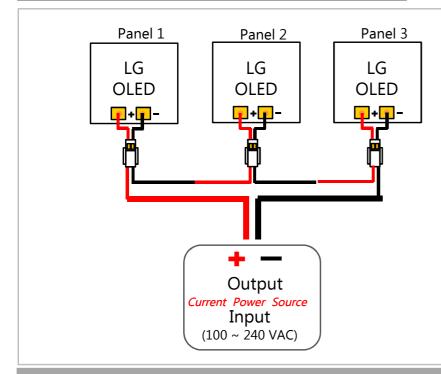
2. Select the Power Driver

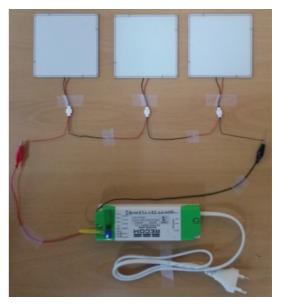
Check Point (b) : Driver Current > OLED Current (ex. 350mA > 150mA)


→ If you wish to achieve brightness above spec levels, the Driver's Maximum Current must be higher than the OLED Specification Current. (Brightness is controlled by current input)

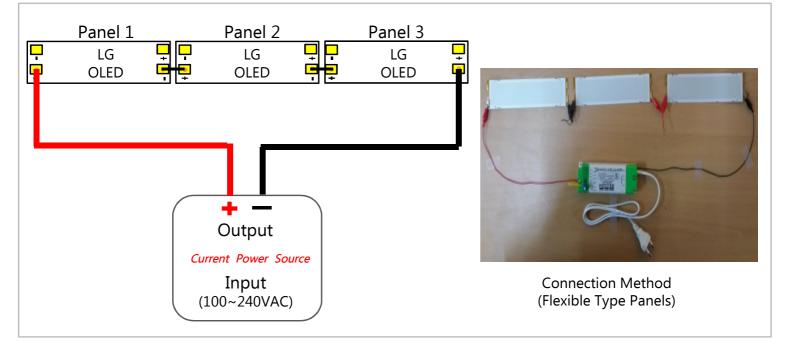
3. Determine the maximum number of OLED Panels per Driver

Check Point (a) : No. of panels x OLED Voltage < Driver Voltage


- Ex) 8.6V x **3 panels** = 25.8V < 34VDC *vs.* 8.6V x **4 panels** = 34.4V > 34VDC \rightarrow Therefore, a Recom driver can drive up to three P6BA30 panels
- 4. Connect the Flexible OLED Panel to Driver


* See Schematic Diagram on page 8

C. Installation guide: Connection Method


Schematic Diagram - Rigid Type

Connection Method (Rigid Type Panels)

Schematic Diagram - Flexible Type

C. Installation guide

Electric Characteristics

	Туре		Rigid								
	Model	N6	I6SA40 N6SA30 N6SB40 N6SB30 N6SC40 N6SC30 N6BA40							N6BA40	N6BA30
a	Voltage [\	/] 6	5.0	8.5	6.0	8.5	6.0	8	.5	6.0	8.5
b	Current [m	A] 2	30	150	60	40	480	30	00	230	150
C	Power [W	'] 1.	.38	1.28	0.36	0.34	2.88	3 2.	55	1.38	1.28
	Туре				KI	gid				FIE	xible
	Model	N6OA40	N6OA30	N6BB40	N6BB30	N6BC40	N6BC30	N6SD40	N6SD30	P6BA40	P6BA30
(a)	Voltage [V]	6.0	8.5	6.0	8.5	6.0	8.5	6.0	8.5	6.0	8.6
b	Current [mA]	230	150	800	500	570	370	2500	1600	230	150
C	Power [W]	1.38	1.28	4.8	4.25	3.42	3.15	15	13.6	1.38	1.29

Recommended Power Supply

- Input : 100 ~ 240 VAC

- Max. Output : Voltage > Panel # x ((a)), Current > ((b)), Power > Panel # x ((c))

C. Installation guide

Driver list

Driver list-up (UL)

Product name	Company	Input		Output		Note		
Product name	Company	Voltage	Frequency	Voltage	Current	note		
ALC12-36-R35	TDK*Lambda	Universal		Universal		3-36 V	0.35 A	12 W, No dimming
BPWXL 6-50U-012	BIAS	Uni	versal	3-50 V	0.12 A	6W, No dimming		
BPWXL 6-21U-035	BIAS	Uni	versal	3-21 V	0.35 A	6W, No dimming		
AC-5C500ABV	AceLEDs	Universal		6-10 V	0.5 A	5W, No dimming		
L03E-350	MAGTECH	Universal		Universal		4-12 V	0.35 A	3W, No dimming
TC1 120 0350-6C	Fulham	120 VAC	50-60 Hz	3-18 V	0.35 A	6W No dimming		

■ Driver list-up (CE)

Product name	Compony	Inpu	Out	put	Note	
Product name	Company	Voltage	Frequency	Voltage	Current	Note
ALC12-36-R35	TDK*Lambda	Univer	sal	3-36 V	0.35 A	12 W, No dimming
LPLC-18-350	MeanWell	90 ~ 132 VAC 47~63 Hz		6-48 V	0.35 A	18 W, No dimming
L03E-350	MAGTECH	Univer	4-12 V	0.35 A	3W, No dimming	
PCC35012	POWERLED	220-240 VAC	50~60 Hz	2-34 V	0.35 A	12W, No dimming
PCC50016	POWERLED	220-240 VAC	50~60 Hz	2-34 V	0.50 A	16W, No dimming
LPVC11A1C	HEP	220-240 VAC	50~60 Hz	3-30 V	0.35 A	10W, Dimming (O)
LPVC24H1C UNI	HEP	100-240 VAC	50~60 Hz	6-30 V	0.8 A	24W, Dimming (O)

A. Product Portfolio

Туре		Rigid							
Shape		100		002	55 55				
Size (mm)	100	× 100	200	× 50	53 × 55				
Model	N6SA40	N6SA30	N6BA40	N6BA30	N6SB40	N6SB30			
ССТ (К)	4,000	3,000	4,000	3,000	4,000	3,000			
Thickness* (mm)	0.88	0.88	0.88	0.88	0.88	1.97			
Seal type			MFE	Type**					
Efficacy (lm/W)	55	60	55	60	55	60			
CRI (Ra)	90								
Flux (lm)	75	75	75	75	20	20			
LT70 (hr)	30,000	40,000	30,000	40,000	30,000	40,000			

* with OCF

**Metal Film Encapsulation

A. Product Portfolio

Туре		R	igid				
Shape		213	3	20			
Size (mm)	213 × 113 320 × 320						
Model	N6BC40 N6BC30		N6SD40	N6SD30			
CCT (K)	4,000	3,000	4,000	3,000			
Thickness* (mm)	0.88	0.88	0.88	0.88			
Seal type		MFE	Туре**				
Efficacy (lm/W)	55 60 55 60						
CRI (Ra)	90						
Flux (lm)	185	185	800	800			
LT70 (hr)	30,000	40,000	30,000	40,000			

* with OCF

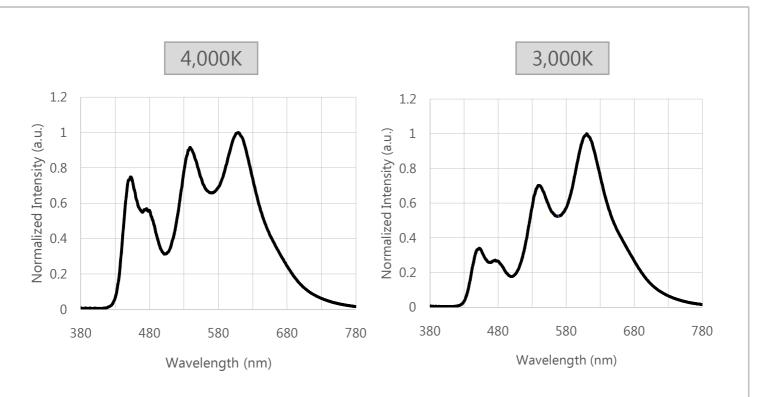
**Metal Film Encapsulation

A. Product Portfolio

Туре			Rig	gid			Flexible		
Shape	140 07		011 110		110		50		
Size (mm)	140 ×	< 140	110 × 110		320 × 110		210 × 50		
Model	N6SC40	N6SC30	N60A40	N6OA30	N6BB40	N6BB30	P6BA40	P6BA30	
CCT (K)	4,000	3,000	4,000	3,000	4,000	3,000	4,000	3,000	
Thickness (mm)*	0.88	0.88	0.88	0.88	0.88	0.88	0.25	0.25	
Seal type				MFE T	ype**				
Efficacy (lm/W)	55	60	55	60	55	60	55	60	
CRI (Ra)		90							
Flux (lm)	150	150	75	75	250	250	75	75	
LT70 (hr)	30,000	40,000	30,000	40,000	30,000	40,000	30,000	40,000	

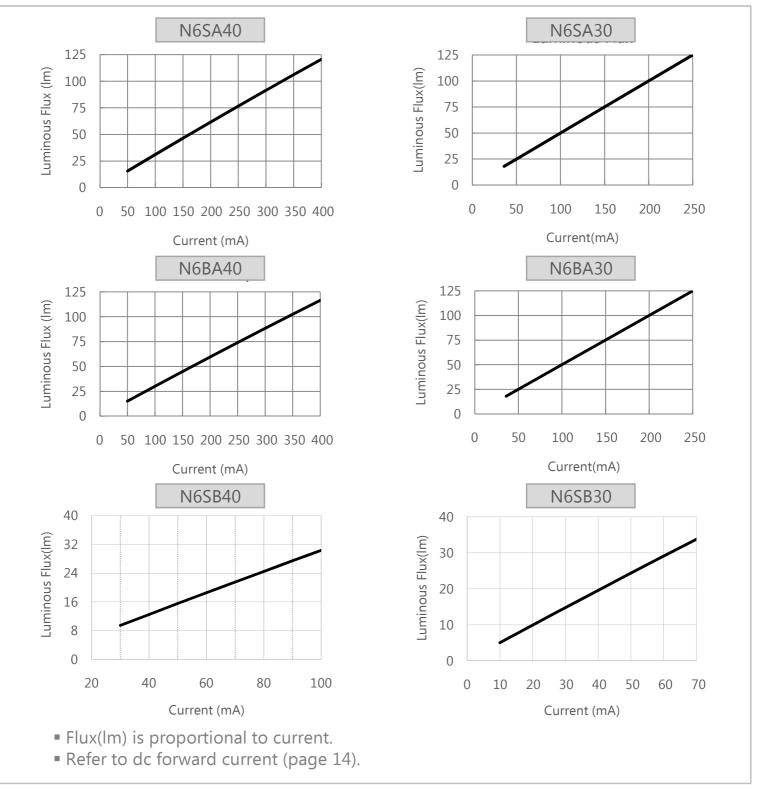
* with OCF

**Metal Film Encapsulation

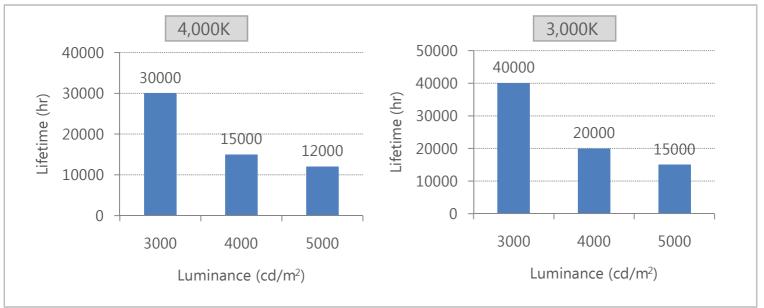

A. Product Portfolio

- The specification of each OLED panel is set at a standard brightness level of 3,000cd/m²
- Higher/lower light output can be achieved by controlling the current levels.
 (Please note that there is a tradeoff between brightness levels and lifetime)

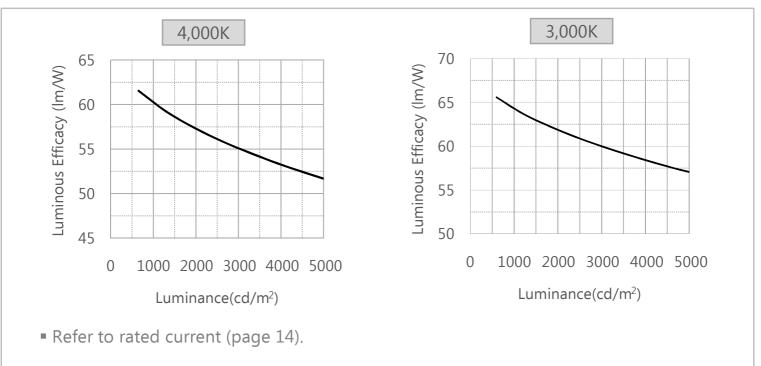
Model	Luminance (cd/m ²)	3,000	4,000	5,000
N6SA40, P6BA40, N6OA40,N6BA40	Current(mA)	230	307	383
	Flux(lm)	75	100	125
N6SA30, P6BA30, N6OA30, N6BA30	Current(mA)	150	200	250
	Flux(lm)	75	100	125
N6SB40	Current(mA)	60	80	100
	Flux(lm)	20	27	33
N6SB30	Current(mA)	40	53	67
	Flux(lm)	20	27	33
N6SC40	Current(mA)	480	640	800
	Flux(lm)	150	200	250
N6SC30	Current(mA)	300	400	500
	Flux(lm)	150	200	250
N6BB40	Current(mA)	800	1067	1333
	Flux(lm)	250	333	417
N6BB30	Current(mA)	500	667	833
	Flux(lm)	250	333	417
N6BC40	Current(mA)	570	760	950
	Flux(lm)	185	247	308
N6BC30	Current(mA)	370	493	617
	Flux(lm)	185	247	308
N6SD40	Current(mA)	2500	3333	4167
	Flux(lm)	800	1067	1333
N6SD30	Current(mA)	1600	2133	2667
	Flux(lm)	800	1067	1333

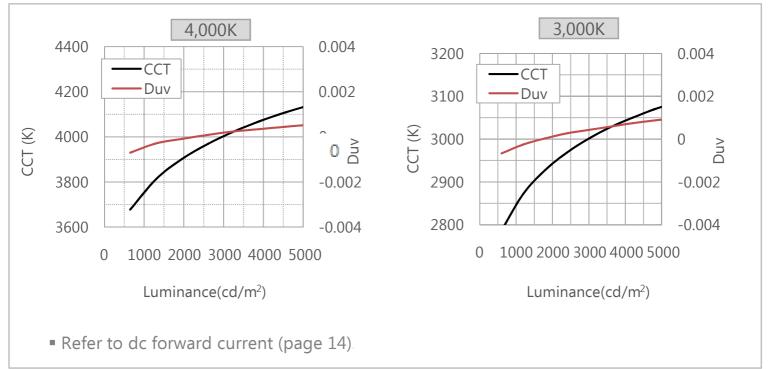

DC forward current & Luminous flux by Luminance

B. Spectrum

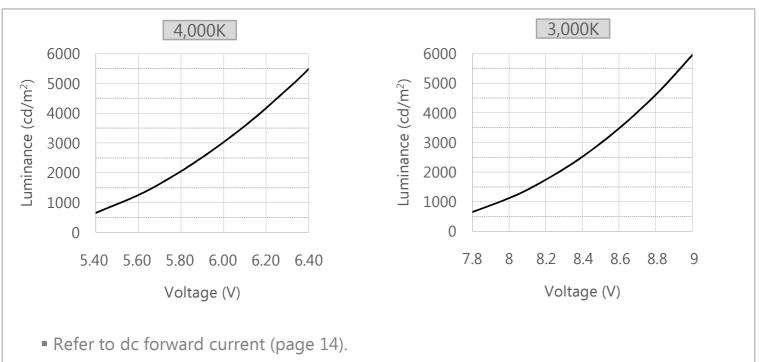


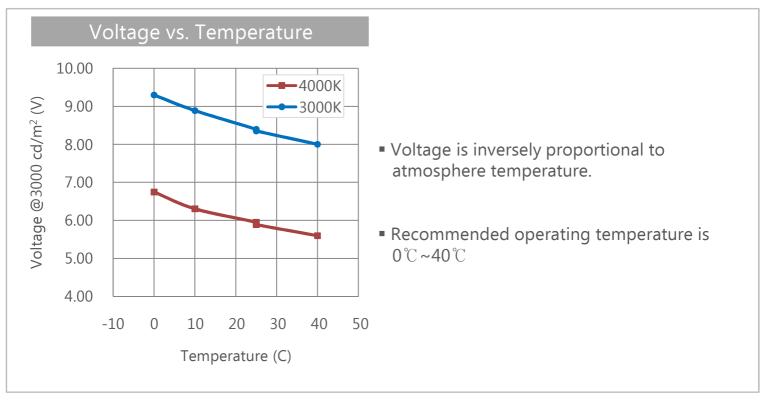
- LG Chem OLED Panels are available in colour temperatures of 4,000K (cool white) and 3,000K (warm white).
- LG Chem OLED panels have high Colour Rendering properties (CRI above 90).
- Natural and Human-Friendly Light Quality
 - → LG Chem OLEDs have spectral distributions that are closest to those of natural light.
 - \rightarrow LG Chem OLEDs produce pleasant and comfortable light with no heat or glare issues.


C. Flux vs Current

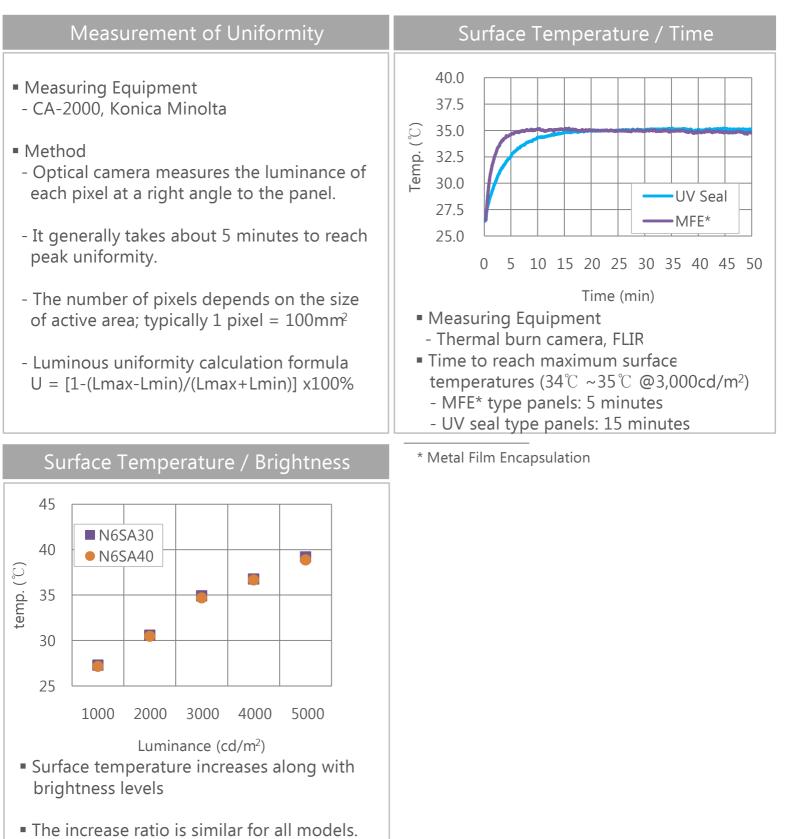


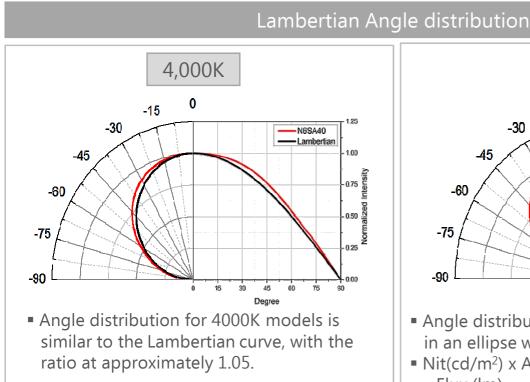
D. Lifetime

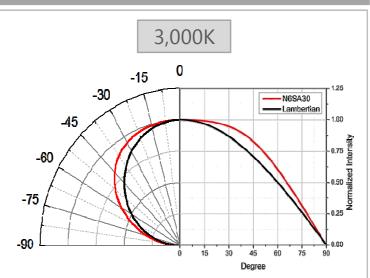

E. Efficacy vs. Luminance



F. CCT & Duv vs. Luminance

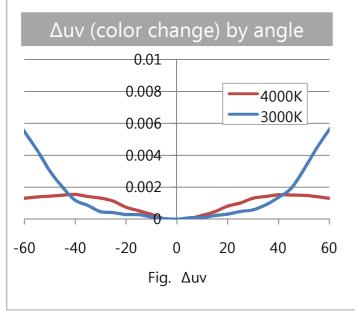

G. IV Curve


H. Voltage vs. Temperature


I. Uniformity & Surface Temperature

20

J. Angular Distribution



 Angle distribution for 3000K models is shapec in an ellipse with the ratio at approx. 1.12

Nit(cd/m²) x Active area xπ x Lambertian Ratio
 = Flux (Im)

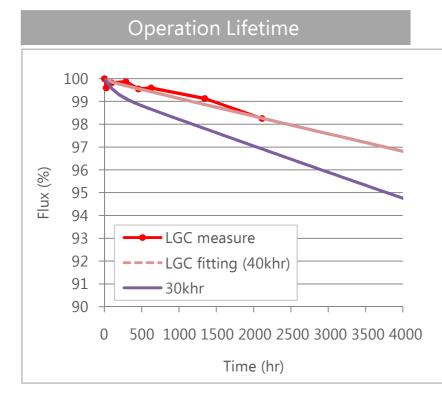
Δuv Angle distribution

- Measuring Equipment
 Goniometer
- Method
 - The panel is rotated from -90° to +90 ° and is measured at each 5°.
- Generally, Δuv is estimated by the data at 60 °.

Reliability

A. Reliability test condition

Rigid type


Evaluation criteria : Luminance change within \pm 10% of initial value				
Items	Condition			
High temperature/humidity operation	60℃, 90% RH / IF=Typ.mA,96Hrs			
Thermal shock	-45 $^{\circ}$ C,15min ↔ 85 $^{\circ}$ C,15min 1cycle ,200cycles			
High temperature /humidity storage	+85℃, 85% / 500Hrs			
Life time	Room Temp. / IF=Typ.mA, 2,000Hrs			

Flexible type

Evaluation criteria : Luminance change within $\pm \ 10\%$ of initial value			
Items	Condition		
High temperature/humidity operation	60℃, 90% RH / IF=Typ., 96Hrs		
Thermal shock	-30 $^{\circ}$ C,15min ↔ 80 $^{\circ}$ C,15min 1cycle ,50cycles		
High temperature /humidity storage	+85℃, 85% / 500Hrs		
Life time	Room Temp. / IF=Typ.mA, 2,000Hrs		
Bending stress	Bent 1,000 times (from a flat position to a 30mm bending radius)		

Reliability

A. Reliability test condition

- LG Chem guarantees a luminance shift below ± 10% of initial value at 2,000Hrs.
- The data measured up to 2,000hrs is extended to calculate the panel's lifetime (LT70).